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Abstract

The fluid is assumed to be inviscid and incompressible and the flow irrotational. A time-integration boundary-integral

method is used to solve the Laplace equation for the velocity potential to calculate the shape and position of the bubble. To

improve the accuracy of the solution, the high-order triangular elements with curved sides and surfaces defined by six

nodes are used to discretize the boundary surface in this investigation. Meanwhile, the singularity of the double-layer

potential is eliminated by recasting the principal-value integral of the double-layer potential when the influence coefficient

matrix is calculated. The material velocity vector at any node can be obtained by the potential of adjacent nodes with an

appropriate weighted method. Elastic mesh technique (EMT), which is a new mesh regulation technique, is further applied

to maintain the regularity of the triangular-element mesh used to discretize the dynamic boundary surface during the

evolution of explosion bubble(s). All these efforts make the present approach viable and robust, and which is validated by

computations of several bubble dynamics problems. Numerical analyses are carried out for the evolution of a bubble near

a free surface and the interaction of two bubbles with a floating structure near a free surface. The robustness of the

algorithm is demonstrated through simulating bubble jets near a free surface producing sharp free surface spikes and

bubble(s) collapsing nearby a floating structure close to a free surface.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

During an underwater explosion, there will be a transient shock wave with high velocity and pressure
propagating radially outwards to be followed by a large bubble containing hot gaseous products of the
explosion [1–4]. Subsequent secondary shocks may be encountered with every time the bubble reaches a
minimum volume. The shock wave has the first damaging effect on a nearby solid structure (e.g. ship,
submarine, etc.), because of the very high pressures associated. The explosion products will then form a
high-pressure gas bubble. Due to inertia, the bubble over-expands and the pressure inside decreases. Since the
ambient pressure is now higher than that inside the bubble, which will cause the collapse of the bubble.
If expansion and collapse occur near an underwater structure, under certain conditions, the bubble will
create a high-speed re-entrant water jet towards the structure. This jet always originates on the farther
side of the bubble with respect to the structure. The jet will penetrate the bubble and impact on the other
bubble wall, creating a toroidal bubble. The pressure involved in this jetting process is not as high as the
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pressure generated by the shock wave but with much longer duration. It is believed that the second
damaging effect is created through this mechanism. In general, the physics associated with the shock
waves are of the order of milliseconds, whereas the flow physics associated with the bubbles are of the order of
seconds.

Boundary element method (BEM) is commonly applied in the simulation of bubble(s) dynamics and its
inherent property of reducing the dimension of the problem by one can greatly save computational effort. This
can become a critical issue in the simulation of three-dimensional (3D) multiple bubbles with more complex
geometrical solid boundaries and/or free surface. The employment of BEM to bubble dynamics can be seen in
the early work of Blake and Gibson [5,6] who studied the growth and collapse of vapor cavitation near a free
surface. Their numerical results of the bubble shape as it evolved matched well with the experiment, which
suggested that BEM can be a good approach to capture the complex features of bubble dynamics including the
formation of water jet. Previous theoretical studies on bubble dynamics have tended to focus on cases of
spherical and axisymmetric bubbles. It is only recently that researchers have begun to explore the simulation
of 3D bubbles. However, most studies are based on linear plane boundary elements with three-node flat
triangles. To improve solution accuracy, the boundary surface is discretized into six-node curved triangular
elements in this paper. Meanwhile, the singularity of the double-layer potential is eliminated by recasting the
principal-value integral of the double-layer potential when the influence coefficient matrix is calculated. The
material velocity vector at any node can be obtained by the potential of adjacent nodes with an appropriate
weighted method. Elastic mesh technique (EMT) is further applied to get the optimum velocity of each node.
Therefore, even no smoothing algorithm has been applied and yet the results obtained are reasonably smooth
for all the cases considered.
2. Theoretical background

Fig. 1 shows a schematic view of the problem to be discussed in this paper. We focus on the case of a
pressure-driven gas bubble initiated near a rigid infinite wall in an incompressible fluid. In this work, surface
tension effect was not taken into account because of the generally large size of the gas bubbles. Viscous effects
are also neglected because the timescale for viscous diffusion is much larger than the oscillation period for
these bubbles. In addition, a rectangular coordinate system O-xyz was adopted with the origin located at the
center of the initial spherical bubble and the z-axis pointing in the opposite direction to gravity (Fig. 1). The
boundary of the bubble is denoted as Sb, which is a regular surface before and after the jet impact. The fluid
domain is denoted by O and it is transformed from a singly connected to a doubly connected region during jet
impact.

In this paper, we assume that the bubbles only contain a non-condensable gas, which can be described as
ideal and the expansion and compression of this gas as adiabatic [7,8]. The internal bubble pressure, P, as a
Fig. 1. Coordinate system.
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function of the bubble volume, V, is

P ¼ Pc þ P0ðV 0=V Þg, (1)

where Pc is the constant vapor pressure inside the bubble. V0 is the volume of the bubble at which the partial
pressure due to the non-condensing gas would be P0. g is the ratio of specific heats, and g ¼ 1.4 for the ideal
diatomic gas. We take g ¼ 1.25 [9] in this investigation. The fluid in the time-varying fluid domain O (Fig. 1) is
assumed to be inviscid, incompressible and the flow irrotational. The velocity potential f is governed by the
Laplace equation:

r2f ¼ 0. (2)

The velocity, u, anywhere in the flow can now be written as

u ¼ rf. (3)

2.1. Direct boundary element method

The Laplace equation is an elliptic equation, so the solution can always be computed everywhere in the fluid
domain, provided that either the potential, f (Dirichlet condition) or the normal velocity, qf=qn (Neumann
condition) is given on the boundaries of the problem. Here q=qn ¼ n � r is the normal inward derivative from
the boundary, S, and n is directed out of the fluid, applying the boundary condition at infinite distance ‘N’

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
!1; f! 0, (4)

where r ¼ (x, y, z) is the position vector. The boundary-integral equation can be written as

lfðpÞ ¼
ZZ

S

qfðqÞ
qn

Gðp; qÞ � fðqÞ
q
qn

Gðp; qÞ

� �
dS. (5)

Eq. (5) is Green’s integral formula, where S is boundary surface including the bubble surface Sb, the free
surface Sf, and the wall surface Sw; p and q are fixed particle and integral variable on boundary surface S,
respectively; l is the solid angle viewed from the point p. l ¼ 4p when the point p is located inside the flow
field, l ¼ 2p when the point p is located on the smooth boundary surface, and lo4p when the point p is
located on the corner. The solid angle subtended at the governing point p can be obtained through integral as
follows:

l ¼
ZZ

S

qG

qn
ðp; qÞdS; p 2 S, (6)

G(p, q) is the free-space Green’s function for the Laplace equation, which is governed by

Gðp; qÞ ¼ p� q
�� ���1. (7)

2.2. Indirect boundary element method

Here we will use the same notations for O as the flow field and S as surface bounding the flow field as
described in Section 2.1. The distributed source is arranged on the boundary surface with source density s(q),
while rpq is the distance between the fixed particle p and integral variable q on the surface S. If the point p is
located inside O (not on S), then the total velocity potential and velocity at point p induced by all the sources
distributed continuously on S can be evaluated by integration over S:

fðpÞ ¼ �
ZZ

S

sðqÞ
rpq

dSq, (8)

uðpÞ ¼ �

ZZ
S

sðqÞr̄ pqð Þ

r3pq

dSq. (9)
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If point p is located on S, Eqs. (8) and (9) cannot be applied directly as the associated integral points are
singular. The detailed method can be referred to Refs. [10,11]. When the indirect boundary element method
(IBEM) is adopted, source density s(q) is obtained through Eq. (8) with given boundary conditions. Induced
velocity of each node on the surface S is solved with Eq. (9). In this paper, DBEM and IBEM are both
employed to simulate the dynamics of underwater explosion bubble in the flow field.

2.3. Potential flow model

The surface tension is neglected in this investigation, for it is insufficient to cause appreciable effect for most
of the lifetime of a cavitation or explosion bubble. The dynamics of the flow is driven by the pressure
boundary condition: the pressure on the liquid side of the boundary surface, P ¼ Pb, and the momentum
conservation via the Bernoulli equation,

P ¼ rgH � r
Df
Dt
þ

1

2
rjuj2, (10)

where r is the fluid density and H is the initial bubble depth

Dx

Dt
¼ u. (11)

On a rigid wall, naught normal velocity has been applied as a boundary condition:

rf � n ¼ 0, (12)

where x is the spatial position vector of fluid particles on the bubble surface and n is the normal vector of the
boundary.

The maximum radius of the bubble is denoted by Rm. Gravity being ignored, Rm can be defined by Eq. (15).
Pressure difference is defined as DP ¼ P1 � Pc, where ambient pressure of the flow field is P1 ¼ Patm þ rgH

at the depth H (initial position of the explosion center). The scaling factors are non-dimensional for length,
pressure, time, velocity potential and buoyancy; chosen to be Rm, DP, Rmðr=DPÞ1=2, RmðDP=rÞ1=2, and
ðrgRm=DpÞ1=2, respectively. Slash 0 is added on the original variables to distinguish them. Eq. (10) in non-
dimensional form is

Df0

Dt0
¼ 1� � V 00=V 0

� �g
� d2z0 þ

1

2
ju0j2 ðon SbÞ, (13a)

Df0

Dt0
¼

1

2
u0
�� ��2 � d2ðz0 � gf Þ ðon Sf Þ, (13b)

Df0

Dt0
¼ 1� P0 � d2z0 þ

1

2
ju0j2 ðon SwÞ, (13c)

where d ¼ ðrgRm=DPÞ1=2, � ¼ P0=DP,gf ¼ d=Rm, d is the initial position of the bubble center.
The dimensionless parameter e defines the ratio between bubble’s initial gas pressure just after explosion and

the hydrostatic pressure at explosion center. Redefine Eq. (11) into non-dimensional form as

Dx0

Dt0
¼ u0. (14)

At initial condition f0 ¼ 0 at t0 ¼ 0. Eqs. (5), (13) and (14) form a complete set of equations which describes
the evolution of the bubble(s) for all the cases considered.

2.4. Toroidal bubble

After the jet penetrates the bubble, the bubble becomes toroidal and the flow field becomes doubly
connected. The velocity potential function f may be multi-valued and new or revised computational
procedures are required. To date, there have been a few studies for axis-symmetrical toroidal bubbles.
Lundgren and Mansour [12] formulated a physically motivated model by representing the solution using a
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smooth dipole distribution over the bubble surface, together with a singular vortex ring localized within the
bubble. Their model is only suitable for a bubble with a constant volume. Best [13] introduced a contiguous
branch cut and formulated the boundary-integral equation both on the bubble surface and on the cut. The cut
needs special numerical treatment. Zhang et al. [14] and Zhang and Duncan [15] presented a hyper singular
boundary-integral method for toroidal bubbles. In their computation, a layer was defined to separate the
water jet and the surrounding domain during the toroidal bubble phase. This layer acts as a vorticity sheet and
moves with the flow. The layer deforms as much, if not much more than the bubble surface, which can make
the tracking very challenging. Wang et al. [7,8] employed a so-called surgical-cut to convert the originally
simply connected bubble to a toroidal shape after the jet impact. Instead of adding a vortex sheet at the impact
area, a vortex ring was placed inside the bubble to account for the double connectivity of the bubble. There is
no longer the need for meticulous tracking of the vorticity sheet as in Zhang et al. [14]; we just ensure that the
vortex ring stays inside the toroid as the bubble evolves. Zhang et al. [1] extended the surgical-cut and vortex
ring technique to general 3D toroidal bubble problems, looking specifically at the issues of the physical impact
and its relation to the numerical stability of the BEM code.

3. Initial conditions

For an explosive, the charge weight (W as expressed in kg) and the depth at which it explodes (H as
expressed in m) are generally known. The relationship between these two parameters and the initial radius for
the numerical calculations (R0) and the maximum bubble radius (Rm) will be established now. At the same
time an expression for the initial gas pressure inside the bubble just after the explosion P0 will be obtained. For
a TNT-charge, an empirical relationship between W, H and Rm exists [10] and given as

Rm ¼ 3:38
W

H þ 10

� �1=3

. (15)

The maximum volume of the bubble will thus be linearly dependent on the charge weight and inversely
proportional to the hydrostatic pressure. Another empirical relationship for the initial pressure of the
explosion products (TNT-explosives) is

P0 ¼ 1:39� 105ðW=V0Þ
g. (16)

For spherically symmetrical bubbles, the Rayleigh–Plesset equation can be used as an equation of motion
(written in dimensionless form):

€R
0
R0 þ 1:5 _R

02
¼ �ðR00=R0Þ3g � 1. (17)

Here R0 is the dimensionless radius of the bubble. The relationship between the bubble initial radius R0, the
weight of the explosive charge W and the bubble maximum radius Rm can be obtained from simultaneous
system of Eqs. (15)–(17) and Eq. (1):

1:39� 105

DP

1

ðg� 1Þ

3W

4pR3
m

 !g

1�
R0

Rm

� ��3ðg�1Þ" #
¼

R0

Rm

� �3

� 1. (18)

The bubble initial radius R0 can be calculated because R0 is the only unknown quantity while the other
parameters are all known in Eq. (18). For example, a 1000 kg TNT explosion at a depth of 60m gives rise to a
maximum bubble radius Rm ¼ 8.2m, the initial pressure P0 ¼ 1:01� 108 Pa and the reference pressure
DP ¼ 7:06� 105 Pa. The dimensionless parameters for this case are g ¼ 1.25, R00 ¼ 0:1304, e ¼ 143.6,
d2 ¼ 0.1167 and the time scale is Dt ¼ 0.3126 s.

4. Numerical solutions

The high-order curved triangular elements are used to discretize the bubble surface in this paper, as
illustrated in Fig. 2(a). To describe the surface of an element in parametric form, we map each curved triangle
in physical 3D space to the familiar right isosceles triangle in the xZ plane, as illustrated in Fig. 2(b). The first
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Fig. 2. The discretized bubble surface and the coordinate mapping: (a) the six-node curved element discrete surface and (b) a curved six-

node triangle in three-dimensional space is mapped to a right isosceles triangle in the xZ plane.
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element node is mapped to the origin, the second is mapped to the point x ¼ 1, Z ¼ 0 on the x-axis, the third is
mapped to the point x ¼ 0, Z ¼ 1 on the Z-axis, the fourth is mapped to the point x ¼ a, Z ¼ 0, the fifth is
mapped to the point x ¼ g, Z ¼ 1�g, and the sixth is mapped to the point x ¼ 0, Z ¼ b.

Where j(x, Z )are element-node cardinal interpolation functions defined as

j1 ¼ 1� j2 � j3 � j4 � j5 � j6, (19)

j2 ¼
1

1� a
x x� a�

a� g
1� g

Z
� �

, (20a)

j3 ¼
1

1� b
Z Z� b�

bþ g� 1

g
x

� �
, (20b)

j4 ¼
1

að1� aÞ
xð1� x� ZÞ, (20c)

j5 ¼
1

gð1� gÞ
xZ, (20d)

j6 ¼
1

bð1� bÞ
Zð1� x� ZÞ, (20e)

a ¼
1

1þ
X 4 � X 2

X 4 � X 1

����
����
; b ¼

1

1þ
X 6 � X 3

X 6 � X 1

����
����
; g ¼

1

1þ
X 5 � X 2

X 5 � X 3

����
����
. (20f)

The bubble surface S is discretized into a set of N nodal points Piði ¼ 1; . . . ;NÞ and M triangular elements
Djðj ¼ 1; . . . ;MÞ. Here interpolation formula of every element is

f ¼
X6
i¼1

jifi;
qf
qn
¼
X6
i¼1

ji

qf
qni

; x ¼
X6
i¼1

xijiðx; ZÞ, (21)

where x, f and qf=qn are nodal displacement vector, velocity potential and normal velocity, respectively, ji is
the interpolation function. Then calculate the integral of every element to constitute the linear equation set
which can be solved finally:

XN

j¼1

Aij � lidij

 !
fi ¼

XN

j¼1

Bijqfj=qn) H � f ¼ G �
qf
qn

, (22)
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Table 1

Errors of calculating Hii

Number of nodes 42 162 640

Relative error (%) 6.3 0.9 0.1

A.M. Zhang et al. / Journal of Sound and Vibration 311 (2008) 1196–12121202
Aij and Bij are the influence coefficients, H and G are the influence coefficient matrices and dij is the
Kronecker d.

The non-diagonal elements of the influence coefficient matrix are calculated with a seven-point quadrature
for triangles [16]. While the diagonal elements Gii of the influence coefficient matrix are singular,
the coordinate system should be converted into polar coordinate system for the integral to eliminate the
singularity, referring to Ref. [17]. When computing Hii, the general algorithm [18] is adopted as shown by
Eq. (23), but there is an error in every time step with this method, as shown in Table 1

Hii ¼ 4p�
XN

j¼0
iaj

Hij. (23)

From Table 1, it can be seen that although the error can be reduced by adding nodes, accumulated
error will be generated with the increment of time step, which will result in the instability in calculation
process. In order to eliminate this error, the paper is based on the method described in Ref. [19].
Consider a singly or multiply connected control volume, denoted by Vs, and bounded by a closed
surface or a collection of closed surfaces, denoted by S. The boundary associated with the Green’s
function may be one of these surfaces. For the moment, using the divergence theorem and the distinctive
properties of the delta function in three dimensions, we find that the Green’s functions satisfy the integral
identity

Z
S

q
qn

Gðp; qÞdSðpÞ ¼

4p when q is inside V s;

2p when q is on S;

0 when q is outside V s;

8><
>: (24)

where the unit normal vector n points into the control volume Vs. When the point q is located on the boundary
S, the improper integral on the left-hand side of Eq. (24) is a principal-value integral.

Using the three relations shown in Eq. (24), the integral formula can be obtained by recasting the principal-
value of the double-layer potential:Z PV

S

fðpÞ
q
qn

Gðp; qÞ

� 	
dSðpÞ ¼

Z
S

½fðpÞ � fðqÞ�
q
qn

Gðp; qÞ

� 	
dSðpÞ þ 2pfðqÞ. (25)

Using Taylor series expansions on Eq. (25), it is found out that as the integration point p approaches the
evaluation point q, the integrand on the right-hand side is non-singular, i.e. the singularity of Hii is eliminated
using the integral formula by recasting the principal-value integral of the double-layer potential. Eqs. (24) and
(25) can only be applied for a closed surface, and for the problems with open surface, it can be dealt with by
connecting the surface into closed regions artificially.

The physical state of the dynamical problem is fully specified when the position of the boundary S and the
distribution of velocity potential f on it are known. With these, the tangential velocity vector along the
boundary S can be evaluated. The normal velocity component qf=qn may be determined from the boundary-
integral formula (5) by treating it according to Eqs. (22)–(25). With rf on the boundary S being known,
Eqs. (13) and (14) may be numerically integrated in time to find the new position of the boundary S with a
corresponding new distribution of f on it. The forward time integration of Eqs. (13) and (14) is carried out
using the predictor-corrector scheme. To maintain the stability of the solution, the time-step size Dt must be
carefully controlled so that the changes in the potential are bounded at each time step. In the present paper the
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Fig. 3. Mesh advanced using material velocity and EMT optimum velocity: (a) mesh advanced using material velocity and (b) mesh

advanced using EMT optimum velocity.
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time-step size Dt is chosen as

Dt ¼
Df

max 1þ 1
2 rf
�� ��2 � d2z� �ðV 0=V Þg

��� ��� , (26)

where Df is some constant. With this choice of Dt, the change in f at each node is bounded above by Df. The
results in this work are obtained with Df kept to around 0.01.

5. Elastic mesh techniques

In the simulation of bubble dynamics with jet formation, the jet tip exhibits strong sink characteristic. The
elements on the bubble surface tend to converge fairly rapidly towards the jet tip and quickly become over crowded
in the jet tip vicinity. (Strictly, the inherent presence of more elements for better resolution of the jet is a reasonable
and acceptable development. The objection arises when too many elements are in the jet tip vicinity which results in
thinning out the element distribution in other regions.) This accumulated imbalance of element distribution will
eventually lead to the early breakdown of the simulation in the absence of other interventions. In order to make the
element distribution as reasonably uniform as possible, EMT is introduced. EMT is based on the idea that if the
mesh is made of elastic ribbons, it should be able to automatically adjust its shape optimally: all segment lengths
are close to equal. In essence, the optimum mesh is found by minimizing the total elastic energy stored in each
segment of the mesh. This approach has an advantage that it actively seeks in a forward manner the optimum
mesh for computation at each time step. This is quite different from those where the re-distribution takes place
after the calculations are made. Compared with the conventional node insertion and deletion approach, EMT
keeps the number of nodes and topological structure of the mesh unchanged. (This may become a critical issue in
deriving an efficient algorithm for matrix inversion in the simulation of multiple bubbles with complex geometric
and yet the number of elements is kept constant without the additional complexities of mesh refinement and
deletion.) Instead of advancing by the material velocity, EMT produces an optimum mesh shifting velocity, which
ensures the regularity of the mesh after advancement (see Fig. 3). Wang et al. [20] are found that EMT has enabled
a much more even distribution of the meshes representing the bubble surface even in the midst of a strong jet
formation where there is great difference in the surface velocity of the bubble. In doing so, the incorporation of
EMT has permitted the use of significantly larger time stepping and still within reasonable accuracy.

6. Numerical results and discussion

6.1. Dynamics of one bubble in an unbounded fluid

One of the simplest bubble dynamics problems is the Rayleigh bubble. There exists a simple ordinary
differential equation (ODE) describing its behavior, which can be solved accurately by standard ODE solver
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such as the fourth-order Runge–Kutta method. The Rayleigh bubble calculated here has initial radius
R0 ¼ 0.1304 and pressure e ¼ 143.6 and d ¼ 0. The initial spherical bubble surface is discretized into a set of
320 six-node curved triangular elements. Since in this case the bubble is expanding and collapsing uniformly
and so is the mesh distribution kept uniform, no mesh optimization via EMT is applied. Comparisons of
results by IBEM, DBEM and the direct solution of Rayleigh equation about the radius variation over two
cycles of the evolution including the expansion phase and collapse phase for Rayleigh bubble have been
carried out in Fig. 4, which show great agreement with each other. Fig. 4 also shows that the solution of
DBEM is nearly in superposition with that of IBEM. So in the next section of this paper, DBEM is adopted to
solve bubble dynamics problems.

Theoretically, Rayleigh bubble will keep spherical throughout its whole lifetime, i.e. the radius at all surface
points should be identical. In order to evaluate the influence of numerical errors on the deformation of
the Rayleigh bubble, the maximum absolute deviation of the bubble surface from the spherical Rayleigh’s
bubble is also shown in Fig. 4. The error increases when the bubble is around its minimum volume but the
error line relatively flat otherwise. It is implied that the Rayleigh bubble is most unstable at its minimum size.
Generally, the error line indicates a mild increasing trend as the numerical errors are constantly accumulating
during the computations. Besides, the time history of pressure inside the bubble is shown in Fig. 5.

To verify the advantage of the six-node curved triangular elements adopted in this paper and the plane
triangular elements adopted by Wang and Khoo [10], the initial bubble is discretized into 162 six-node curved
triangular elements and three-node plane triangular elements, respectively, and the motion cycles are
simulated separately. The time history of the Rayleigh bubble volume calculated is shown in Fig. 6.

Fig. 6 shows that the bubble volume variation solved by curved triangular elements is in excellent agreement
with the exact solution. However, greater error is induced by plane triangular elements compared with the
Fig. 4. The time history of the Rayleigh bubble radius calculated from the Rayleigh–Plesset equation using a fourth-order Runge–Kutta

method (solid line), the 3D model using the present approach with IBEM (dash line), DBEM nodes (dots) being used.
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Fig. 5. The time history of pressure inside the bubble.
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Fig. 6. The time history of the Rayleigh bubble volume calculated from the Rayleigh–Plesset equation using a fourth-order Runge–Kutta

method (dash line), the 3D model using the present approach with three-node plane triangular element (solid line), six-node curved

triangular element (dots) being used.
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exact solution, which indicates that the bubble behavior simulated by curved elements is of higher accuracy
than the simulation by plane elements with the same nodes. Furthermore, the curved elements can be
employed to efficiently simulate complex curved boundary, such as free surface and structure boundary with
great curvature, etc.

6.2. Dynamics of one bubble near a free surface

In this case, both the gravity and free surface effects are taken into account, with the initial size and pressure
(R0 ¼ 0.09 and pressure e ¼ 408.6) is located 0.8 dimensionless units under the initially quiescent free surface.
The gravity is in the vertical direction with strength d2 ¼ 0.57. The initial bubble is discretized into 320
six-node curved triangular elements, while the free surface with a non-dimensional size of 6� 6 units is
discretized into 690 six-node curved triangular elements. The source distribution outside the surface mesh area
is assumed to be null value. EMT is applied to maintain the regularity of the triangular-element mesh used to
discretize the dynamic boundary surface during the evolution of explosion bubble.

Fig. 7(a) shows the initial configuration. (On these figures, the color contour represents the magnitude of the
potential function, f.) At time t ¼ 0.29 the bubble is in its expanding phase and there can be found a small rise
on the free surface (Fig. 7(b)). During the expanding phase, the gravity and the Bjerknes [21] repellent from the
free surface show little influence on the bubble behavior. When the bubble reaches its maximum size, it is still
kept nearly spherical. The maximum bubble size is reached when t ¼ 0.69 which is displayed in Fig. 7(c). Some
deformation of the bubble shape can be observed at this time. On the free surface, a higher rise is achieved and
obvious surface peak attributing to the presence of the bubble is observed. After reaching its maximum size,
the bubble starts to collapse. In the consequent collapsing phase, the effect of gravity is felt. The lower bubble
boundary moves faster than the upper one which makes the bubble become a bean-like shape at non-
dimensional time of t ¼ 1.19 and the start of jet formation process (Fig. 7(d)). In Fig. 7(e) the jet is fully
developed and going to impact the upper boundary of the bubble. At the dimensionless time of 1.38 (Fig. 7(f)),
the jet has impacted on the opposite bubble surface and a toroidal bubble is formed via the employment of a
surgical-cut and a vortex ring. The purple bar inside the toroidal bubble is the vortex ring placed to simulate
the rotational part of the flow. Fig. 7(g) shows the further evolution of the toroidal bubble which is in the
process of rebounding. Correspondingly, there is a jet on the free surface pointing upwards.

It may be noted that EMT was applied in both the simulations of Fig. 7 which serves to avoid
the overcrowding of elements in the jet tip vicinity. EMT works well throughout the phase of the toroidal
bubble evolution. Had EMT not been employed, there would have been necessary to employ nodes insertion
to avoid exceedingly large size elements and mesh refinements at other parts so that the shape of the bubble is
still reasonably smoothed. The present results have also been compared with those of a validated axis-
symmetrical bubble model [7,8] for a axis-symmetrical case. The results of the axis-symmetrical method are
shown in Fig. 8. Fig. 9 shows that the present results compare favorably with those from an axisymmetric
model.
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Fig. 7. Evolution of one bubble near a free surface (e ¼ 408.6 and d2 ¼ 0.57): time (a) t ¼ 0.00, (b) t ¼ 0.29, (c) t ¼ 0.69, (d) t ¼ 1.19, (e)

t ¼ 1.32, (f) t ¼ 1.38, and (g) t ¼ 1.49.

Fig. 8. Evolution of one bubble near a free surface using axisymmetric model (e ¼ 408.6 and d2 ¼ 0.57): time (1) t ¼ 0.00, (2) t ¼ 0.29, (3)

t ¼ 0.69, (4) t ¼ 1.19, and (5) t ¼ 1.35.
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Fig. 9. The time history of the free surface peak vertical displacement using axisymmetric model (dash line), the 3D model (dots) in this

paper.
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6.3. Dynamics of one bubble near a floating cylinder under free surface

This case studies the evolution of one explosion bubble near a rigid cylinder (see Fig. 10(a)) in the presence
of the free surface. The explosion bubble is originally spherical the same as the case in Section 6.2. The cylinder
is located to the right side of the bubble at a distance of 0.7 dimensionless units. The radius and length of the
rigid cylinder are 1 dimensionless unit and 6 dimensionless units, respectively. The initial free-surface is located
0.8 units above the bubble center. The initial bubble is still discretized into 320 six-node curved triangular
elements and the free surface with the cylinder is discretized into 1680 six-node curved triangular elements.
The calculating results are given out in the dimensionless form as shown in Fig. 10.

Fig. 10(a) shows the initial configuration. (On these figures, the color contour represents the magnitude
of the potential function, f.) During the expanding phase gravity shows little influence on the bubble
behavior. The bubble continues to expand till its maximum size at time 0.68 in Fig. 10(b). Its shape
is a little different from that of the same time in Section 6.2. One can easily detect the asymmetrical shape of
the bubble with the surface facing the rigid cylinder exhibiting a flatter feature. There is an obvious rise of
the free surface due to the expanding bubble. As time progresses, the bubble starts to contract and a jet
pointing downwards is developed during the collapsing phase. At time 1.31, the jet is quite developed which is
clearly observed in Fig. 10(d). The presence of the jet is manifested as higher pressure exerted on the left side of
the rigid cylinder nearest the bubble. Because of the jet, the rise of the free-surface becomes even higher
although the lateral extent has become smaller. The jet has impacted on the opposite bubble surface and a
toroidal bubble is formed, and radiates pressure waves outwards. Then the time history of the pressure on
some typical element of the cylindrical surface is shown in Fig. 11. Numerical analyses show that an
underwater bubble placed near a structure (e.g. ship, submarine, etc.), will, in many cases, develop a jet
directed towards this structure. This jet can be very powerful and is capable of destroying the ship (typical jet
velocities can be 100m/s or larger). Depending on the exact location of the bubble, the proximity to the
free surface and the influence of gravity, the jet may impact on the structure or miss it completely. Therefore a
thorough knowledge of the bubble dynamics can mean the difference between the survival or destruction of
the structure.
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Fig. 10. Evolution of one bubble near a floating cylinder under free surface (e ¼ 408.6 and d2 ¼ 0.57): time (a) t ¼ 0.00, (b) t ¼ 0.68, (c)

t ¼ 1.13, and (d) t ¼ 1.31.
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Fig. 11. The time history of the pressure on the cylinder surface.
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Fig. 11 shows that the pressure peak is approximately 32 times of the atmospheric pressure. One pressure
peak appears at the beginning of bubble expanding phase and another pressure peak in the final stage of
bubble collapsing, which is called the second pulsation pressure. The second pulsation pressure makes the
structure oscillating, and thereby causes serious overall structure damage. Because the residual energy inside
the bubble is only 7 percent of the initial energy after the first bubble pulsation [9], so only the first bubble
pulsation is considered to have made damage on the structure.

6.4. Dynamics of two bubbles near a floating cylinder under free surface

In the fourth case, the dynamics of two bubbles near a floating cylinder under free surface is investigated,
which form a complete three-dimension problem. Single bubble is replaced with two bubbles with the same
initial size and pressure placed along the axis of the cylinder and detonated synchronously based on Section
6.3. The horizontal distance between two bubbles is two dimensionless units. Each initial bubble is still
discretized into 320 six-node curved triangular elements and the free surface with the cylinder is discretized
into 1680 six-node curved triangular elements. The calculating results are given out in the dimensionless form
as shown in Fig. 12.

Fig. 12(a) shows the initial configuration. (On these figures, the color contour represents the magnitude of
the potential function, f.) At the time of 0.68 (Fig. 12(b)), the bubble has about expanded to its maximum size.
Some deformation of the bubble shape can be observed at this time, and because of the presence of the rigid
cylinder and the free surface, their right sides are clearly flattened. On the free surface, a higher rise is achieved
and obvious surface peaks attributing to the presence of the two bubbles are observed. After reaching its
maximum size, the two bubbles are in the process of collapsing. At around t ¼ 1.13 the two bubbles collapse
further which is depicted in Fig. 12(c). Due to the effect of gravity, the bubble starts to lose its symmetry. In
the numerical model, a water jet can be observed to develop from the right side of the bubble surface. At time
t ¼ 1.35, the oblique jets are formed, which are shown in Fig. 12(d). Another view is shown in Fig. 13.
Correspondingly, there are two jets on the free surface pointing upwards.

7. Conclusions

In this paper, a 3D BEM approach is presented to study underwater explosion bubble problems. The
dynamics of bubble(s) in four different arrangements have been simulated. For the simplest Rayleigh bubble
case strict comparison is made with the analytical solution of Rayleigh equation, and there is very good
agreement. Consider the effects of gravity on the bubble behavior, and numerical analyses are carried out for
the evolution of a bubble near a free surface and the interaction of two bubbles and a floating structure near a
free surface. No smoothing algorithm has been applied and yet the results obtained are reasonably smooth for
all the cases considered, which suggests that the present approach proposed is stable and robust.

When the influence coefficient matrix is calculated, the singularity of the double-layer potential is eliminated
by recasting the principal-value integral of the double-layer potential to improve the solution accuracy.
Meanwhile, the solution accuracy can be further improved with high-order curved triangular elements without
increasing the computation cost for the matrix is of full rank. When the normal and tangential velocities of the
boundary surface are calculated, high-order curved elements show superiority in the processing methods
employed such as interpolation, fit technique.
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Fig. 12. Evolution of two bubbles near a floating cylinder under free surface (e ¼ 408.6 and d2 ¼ 0.57): time (a) t ¼ 0.00, (b) t ¼ 0.68, (c)

t ¼ 1.13, and (d) t ¼ 1.35.
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Fig. 13. The jet is formed during the bubbles collapsing.
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During the expanding phase gravity shows little influence on the bubble behavior. When the bubble reaches
its maximum size, it is still kept nearly spherical. In the consequent collapsing phase, the effect of gravity is
felt, and the jet impacts on the opposite bubble surface and a toroidal bubble is formed. The presence of free
surface, structure and gravity effect can give rise to jet(s) formation during the bubble(s) evolution. It is
interesting to note their characteristics and differences. The free surface-induced jet always points downwards;
while the gravity-induced jet always points upward and is not as sharp as the jet due to another bubble.

Numerical analyses show that an underwater bubble placed near a structure (e.g. ship, submarine, etc.), will,
in many cases, develop a jet directed towards this structure. This jet can be very powerful and is capable of
destroying the ship. Depending on the exact location of the bubble, the proximity to the free surface and the
influence of gravity, the jet may impact on the structure or miss it completely. Therefore a thorough
knowledge of the bubble dynamics can mean the difference between the survival or destruction of the
structure.
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